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Abstract

In this paper, we propose a Bayesian method for modelling count data by Pois-
son, binomial or negative binomial distributions. These three distributions have in
common that the variance is, at most, a quadratic function of the mean. We use
prior distributions on the variance function coefficients to consider simultaneously
the three possible models and decide which one fits the data better. This approach
sheds new light on the analysis of the Sibship data (Sokal and Rohlf, 1987). The
Jeffreys-Lindley paradox is discussed through some illustrations.
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1 Introduction

In count data modelling, the Poisson, the binomial or the negative binomial
distributions are often used to fit the data and the problem of choosing
between these three distribution families is a topic widely studied in the
literature.

For instance, Greenwood and Yule (1920) found that Poisson distribu-
tion fitted poorly the number of accidents experienced by a group of work-
ers whereas the negative binomial distribution fitted the data very well.
Edwards and Gurland (1961) used the negative binomial and Poisson dis-
tributions for modelling accident data. Lenk (1999) proposed Poisson and
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negative binomial distributions for traffic accident counts (see also Gelfand
and Dalal, 1990, for a similar study of accident data). Indeed, in such sit-
uations the presence of “non-Poisson” variation should suggest a negative
binomial model. Similar problems of overdispersed models have been con-
sidered by Ramakrishnan and Meeter (1993) to analyse the data set from a
pollution impact study (see also Dean and Lawless (1989) for a theoretical
approach and Preece et al. (1988) for the study of Bortkewitsch’s data).
Note also that Poisson model can be used for “extra-binomial” variation as
in Williams (1996) in the linear model area.

The important point to note here is that the Poisson, the binomial and
the negative binomial distributions belong to one-parameter natural expo-
nential families. Thus, they are characterized by their variance functions;
that is, the relationships between their variances and their means. In our
case, the variance functions are second-order polynomials. The purpose
of this paper is to construct a Bayesian method of model choice based on
prior distributions on the coefficients of the variance function. The method
is quite automatic and one of its advantages appears when distributions
from different families are very close. Roughly speaking, one can say that
the Poisson model is on the borderline between the binomial and negative
binomial models. In such a situation, p-values in Chi-squared goodness-of-
fit tests are difficult to interpret and are sometimes misleading. Moreover,
this property leads to an interesting version of the Jeffreys-Lindley paradox:
when the prior distribution tends to a vague prior, the posterior distribu-
tion converges towards the prior distribution of each model and not towards
a distribution that gives a mass 1 to the Poisson model.

In Section 2, we exhibit the common parameter in the variance func-
tion that distinguishes the three families of distributions. We then present
the Bayesian method of model selection. In Section 3 a parallel with the
Jeffreys-Lindley paradox is discussed. In Section 4, we present two ap-
plications. First of all, the overdispersed Sibship data set appears to be
well fitted by a truncated binomial distribution. Next, our conclusion for
the well-known Bortkewitsch data set agrees with the use of the negative
binomial distribution, proposed by Preece et al. (1988).
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2 A Bayesian choice

2.1 Natural exponential families and their variance functions

For all non negative mean parameter m, let us denote by P(m) the Poisson
distribution and B(N,m) (resp. NB(N,m)) the binomial (resp. negative
binomial) distribution. One knows that all these models belong to the
general framework of Natural Exponential Families (NEFs). Since different
values of N in N give different NEFs in the binomial as well as in the
negative binomial cases, the symbol (B)N (resp. (NB)N ) stands in the
sequel for the binomial (resp. negative binomial) NEF with parameter N .

It is well known that, for all these NEFs, writing the variance V as a
function of the mean m, yields

V (m) = am2 +m, (2.1)

where the value of a characterizes the NEF. Thus, a null value for a relates
to the Poisson NEF, a negative one to the binomial (B)−1/a NEF and a
positive one to the negative binomial (NB)1/a NEF. Then the problem of
model choice reduces to the estimation of the sign of a.

2.2 The method

We assume that, given a, X1, · · · ,Xq are independent and identically dis-
tributed with distribution in the Poisson NEF if a = 0, in a binomial
(B)−1/a NEF if a ∈ −1/N∗ or in a negative binomial (NB)1/a NEF if
a ∈ 1/N∗.

A Bayesian choice of the type of NEFs among the three ones under
consideration consists in comparing the three posterior probabilities P (a =
0|X = x), P (a > 0|X = x) and P (a < 0|X = x), where X = (X1, · · · ,Xq).
Then we can choose the type of model corresponding to the highest poste-
rior probability. We can also conclude that different types of models explain
data equally well when their associated posterior probabilities are close.

If, rather than selecting a type of model between three types, one is
interested in choosing the best model between an infinite set of models,
then a Bayesian choice of model consists in choosing the value of a, which
maximizes its posterior probabilities.
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2.3 Prior and posterior distributions on a

In this paper, we consider two simple prior distributions for a, denoted by
Π and Π∗, allocating equal weights to the three families of distributions.
The first prior distribution is derived from Poisson distributions so that it
gives a non-null weight for all possible values of a. It is defined, for all n in
N∗, by

Πα,β(a = 0) =
1

3

Πα,β(a = 1/n) =
1

3
e−α

αn−1

(n − 1)!

Πα,β(a = −1/n) =
1

3
e−β

βn−n0

(n− n0)!
I{n ≥ n0}

where α and β are positive hyperparameters and n0 = maxi=1,...,qXi.

The second prior distribution is simply a mixture of uniform distribu-
tions on truncated supports of a. It is defined by

Π∗K(a) =





1
3 if a = 0

1
3K if 1

a ∈ {1, ...,K}
1

3K if − 1
a ∈ {n0, ..., n0 +K − 1}

where K ∈ N∗ is an hyperparameter.

Using Bayes formula

P (a = z|X = x) = C(x) p(X = x|a = z)π(a = z),

where π is the prior distribution on a and C(x) is a constant of normaliza-
tion, one can easily obtain the following posterior probabilities:

P (a > 0|X = x) =
∑

n∈N∗

P (a = 1/n|X = x)

P (a < 0|X = x) =
∑

n∈N∗

P (a = −1/n|X = x).

When the mean parameter is unknown but the sample size q is large
enough, one can replace m by its empirical mean X̄ =

∑q
i=1Xi, as we will
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do for the two real data sets studied in Section 4. For small sample size
(and still with m unknown), it may be of interest to consider also a prior
distribution on the mean parameter m. This can easily be done following
the modelling detailed e.g. in Robert (2001).

3 The Jeffreys-Lindley paradox

The use of improper vague prior, as for instance π(a = 1/n) = 1, is always
delicate in hypothesis testing (see DeGroot, 1973). Moreover, in our case
the series

∑
i∈N∗ p(x|a = 1/n) and

∑
i∈N∗ p(x|a = −1/n) do not converge.

This lead to an indeterminacy in the posterior probabilities.

An alternative is then to use a sequence of probabilities that tends to
a vague prior. For instance, we may examine the limit of the posterior
probabilities when α and β tends to +∞ for the prior distribution Πα,β or
when K 7→ +∞ for the uniform prior Π∗K . However, it is well known that
limiting arguments are not valid in hypothesis settings, especially when
there is a simple hypothesis (here “a = 0”). This usually lead to the
well-known Jeffreys-Lindley paradox (see for instance Robert, 2001). This
paradox is characterized by the fact that, when the prior distribution tends
to a vague prior, the limit of the posterior probability does not depend on
the data and, in many cases, gives a mass 1 to the simple null hypothesis.
In our problem, we observe the first part of the paradox, mainly because the
likelihood p(x|a) converges to a limit ` when a tends to 0, or equivalently
when n or −n tends to +∞. However, because ` is not 0 but p(x|0), the
limits of the posterior probabilities are equal to the prior probabilities. This
result can easily be generalized by the following proposition.

Proposition 3.1. Let {πγ ; γ ∈ R or N} a family of prior probabilities such
that, ∀γ, πγ(a = 0), πγ(a > 0) and πγ(a < 0) do not depend on γ and such
that

(a) πγ({1, 1
2 , ...,

1
A})

γ→∞−→ 0, ∀A ∈ N∗,

(b) πγ({−1,−1
2 , ...,− 1

A})
γ→∞−→ 0, ∀A ∈ N∗.

Then:

• P (a = 0|x)
γ→∞−→ π(a = 0)
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• P (a > 0|x)
γ→∞−→ π(a > 0)

• P (a < 0|x)
γ→∞−→ π(a < 0)

Proof. The limit of p(x|a) is p(x|0) when a tends to 0 (it corresponds to
the standard convergence of binomial or negative-binomial distributions
towards Poisson distribution). From (a) and (b), we have

lim
γ→+∞

∑

n∈N∗

1

π(a > 0)
p(x|a = 1/n) πγ(a = 1/n)

= lim
γ→+∞

∑

n∈N∗

1

π(a < 0)
p(x|a = −1/n) πγ(a = −1/n)

= p(x|a = 0),

which completes the proof.

We now illustrate this paradox by some Monte-Carlo studies. We sim-
ulate data sets of size 100. We consider three cases: the data are drawn
respectively from a Poisson distribution of mean 10, a binomial distribu-
tion of mean 10 and n = 20 or a negative binomial of mean 16 and n = 20.
The prior distribution chosen is Π∗K , for several values of K. Note that
Π∗K(a = 0) = Π∗K(a < 0) = Π∗K(a > 0) = 1/3.

Table 1: Simulation results with Xi|m ∼ P(10).

Probabilities K = 5 K = 10 K = 50 K = 100 K = 1000 K = 10000

P (a = 0|X = x) 1 0.99 0.54 0.43 0.34 0.33

P (a < 0|X = x) 0 0.01 0.44 0.49 0.39 0.34

P (a > 0|X = x) 0 0.00 0.03 0.08 0.27 0.32

Table 2: Simulation results Xi|n,m ∼ NB(20, 10).

Distribution K = 5 K = 10 K = 20 K = 100 K = 1000 K = 10000

P (a = 0|X = x) 1 0.14 0.02 0.06 0.13 0.32

P (a < 0|X = x) 0 0.00 0.00 0.00 0.06 0.29

P (a > 0|X = x) 0 0.85 0.98 0.93 0.80 0.40
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Table 3: Simulation results Xi|n,m ∼ B(20, 40/3).

Distribution K = 10 K = 500 K = 1000 K = 10000 K = 100000

P (a = 0|X = x) 0 0.01 0.02 0.14 0.29

P (a < 0|X = x) 1 0.99 0.97 0.73 0.41

P (a > 0|X = x) 0 0.00 0.01 0.13 0.29

4 Illustrations

4.1 Sibship data

The data in Table 4 are taken from Sokal and Rohlf (1987). They consist
of frequencies of males in 6115 sibship of size 12 in Saxony (1876-85).

Table 4: Sibship data

Males 0 1 2 3 4 5 6 7 8 9 10 11 12

Observed 3 24 104 286 670 1033 1343 1112 829 478 181 45 7

The nature of the data set suggests the use of a binomial NEF (B)12 as
the model. However, Gelfand and Dalal (1990) proved that there is a sig-
nificant overdispersion; that is, the estimated variance significantly exceeds
the theoretical one. As suggested by formula (2.1), such overdispersed data
could be fitted better by binomial model with parameter N > 12, Poisson
model or negative binomial one.

We first select the best type of NEF using the method described in
Section 2.2 with prior distribution Πα,β. The hyperparameter β has been
arbitrarily fixed equal to α, since we have observed that it has no effect on
the posterior probability.

We observe that the binomial type of NEFs is the most likely one for
this data set. Its posterior probability is always very close to 1, except for
extreme values of α. In that case we are in the presence of the Jeffreys-
Lindley paradox.

The model that has the highest posterior probability is the binomial
one with parameter a = −1/14. The distribution which would best fit the
data set is the binomial B(14, 6.23), where 6.23 is the empirical mean for
these data. Of course, the probability to observe 13 or 14 males among
12 children is null ! So we consider a truncated binomial distribution on
{0, · · · , 12}.
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Figure 1: Frequencies for Sibship data (�), binomial with parameter 12 (F) and

truncated binomial with parameter 14 (�)

As can be seen in Figure 1, the truncated distribution fits quite well the
sibship data set. Its related Chi-squared distance is equal to 18.75 although
it is equal to 110.5 for the initial binomial B(12, 6.23). The Chi-squared
test of fit gives a p-value equal to 10−6 for the B(12, 6.23) distribution and
0.12 for the truncated one. Thus, such a result shows that overdispersed
data could be fitted by truncated distributions.

4.2 Bortkewitsch’s data

The data in Table 5 are taken from von Bortkewitsch (1898). They consist
of frequencies of Prussian soldiers killed by horse-kicks.

Table 5: Bortkewisch’s data set.

Number of deaths 0 1 2 3 4 5+

Observed freq. 144 91 32 11 2 0

Although these counts are historically associated to the Poisson distri-
bution, Preece et al. (1988) showed that the negative binomial distribution
may be derived as a model for these data. Applying our Bayesian method

pommeret/graphsib.eps
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with prior distribution, Πα,β, we obtain the results listed in Table 6. We
have observed that the parameter α has no effect on the conclusion and
then we have fixed arbitrarily α equal to β here. In Table 7 are listed the
results with Π∗K as prior distribution.

Table 6: Posterior probabilities for Bortkewisch’s data set with Πα,β prior .

β 10−7 0.1 1 5 10 20 50 500

P (a = 0|X = x) 0.998 0.98 0.75 0.38 0.33 0.33 0.33 0.333

P (a < 0|X = x) 0.001 0.00 0.02 0.08 0.14 0.21 0.28 0.328

P (a > 0|X = x) 0.000 0.02 0.23 0.54 0.53 0.46 0.39 0.339

Table 7: Posterior probabilities for Bortkewisch’s data set with Π∗
K prior .

K 1 10 50 100 500

P (a = 0|X = x) 0.998 0.42 0.35 0.34 0.33

P (a < 0|X = x) 0.002 0.08 0.21 0.25 0.30

P (a > 0|X = x) 0.000 0.50 0.44 0.41 0.36

One can see that for small values of β and K the Poisson model is
chosen. For larger values the method suggests a negative binomial model
even if its posterior probabilities are close those of the Poisson model. For
very large values we observe the Jeffreys-Lindley paradox.
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